Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2271122

ABSTRACT

The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-ß. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.

2.
Vet Res ; 53(1): 67, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2009459

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 103 TCID50/mL the minimum viral dosage required to establish a productive infection. IFNs and antiviral ISGs were not induced in ATE cultures in response to MERS-CoV infection, strongly suggesting that ISGs expression observed in vivo is rather a consequence of the IFN induction occurring in the nasal mucosa of camelids.


Subject(s)
Camelids, New World , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents , Bronchi , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/physiology
3.
Viruses ; 14(4)2022 04 16.
Article in English | MEDLINE | ID: covidwho-1792413

ABSTRACT

Several animal species are susceptible to SARS-CoV-2 infection, as documented by case reports and serological and in vivo infection studies. However, the susceptibility of many animal species remains unknown. Furthermore, the expression patterns of SARS-CoV-2 entry factors, such as the receptor angiotensin-converting enzyme 2 (ACE2), as well as transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL), cellular proteases involved in SARS-CoV-2 spike protein activation, are largely unexplored in most species. Here, we generated primary cell cultures from the respiratory tract of domestic and wildlife animals to assess their susceptibility to SARS-CoV-2 infection. Additionally, the presence of ACE2, TMPRSS2 and CTSL within respiratory tract compartments was investigated in a range of animals, some with unknown susceptibility to SARS-CoV-2. Productive viral replication was observed in the nasal mucosa explants and precision-cut lung slices from dogs and hamsters, whereas culture models from ferrets and multiple ungulate species were non-permissive to infection. Overall, whereas TMPRSS2 and CTSL were equally expressed in the respiratory tract, the expression levels of ACE2 were more variable, suggesting that a restricted availability of ACE2 may contribute to reduced susceptibility. Summarized, the experimental infection of primary respiratory tract cell cultures, as well as an analysis of entry-factor distribution, enable screening for SARS-CoV-2 animal reservoirs.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Animals, Wild , Dogs , Ferrets , Humans , Primary Cell Culture , Spike Glycoprotein, Coronavirus
4.
Vet Pathol ; 59(4): 565-577, 2022 07.
Article in English | MEDLINE | ID: covidwho-1673724

ABSTRACT

The emergence of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inspired rapid research efforts targeting the host range, pathogenesis and transmission mechanisms, and the development of antiviral strategies. Genetically modified mice, rhesus macaques, ferrets, and Syrian golden hamsters have been frequently used in studies of pathogenesis and efficacy of antiviral compounds and vaccines. However, alternatives to in vivo experiments, such as immortalized cell lines, primary respiratory epithelial cells cultured at an air-liquid interface, stem/progenitor cell-derived organoids, or tissue explants, have also been used for isolation of SARS-CoV-2, investigation of cytopathic effects, and pathogen-host interactions. Moreover, initial proof-of-concept studies for testing therapeutic agents can be performed with these tools, showing that animal-sparing cell culture methods could significantly reduce the need for animal models in the future, following the 3R principles of replace, reduce, and refine. So far, only few studies using animal-derived primary cells or tissues have been conducted in SARS-CoV-2 research, although natural infection has been shown to occur in several animal species. Therefore, the need for in-depth investigations on possible interspecies transmission routes and differences in susceptibility to SARS-CoV-2 is urgent. This review gives an overview of studies employing alternative culture systems like primary cell cultures, tissue explants, or organoids for investigations of the pathophysiology and reverse zoonotic potential of SARS-CoV-2 in animals. In addition, future possibilities of SARS-CoV-2 research in animals, including previously neglected methods like the use of precision-cut lung slices, will be outlined.


Subject(s)
COVID-19 , Rodent Diseases , Animals , Antiviral Agents/therapeutic use , COVID-19/veterinary , Cricetinae , Disease Models, Animal , Ferrets , Lung/pathology , Macaca mulatta , Mice , Rodent Diseases/pathology , SARS-CoV-2
5.
Annu Rev Biomed Eng ; 23: 461-491, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1191179

ABSTRACT

Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.


Subject(s)
COVID-19/immunology , Tissue Engineering/methods , Adaptive Immunity , Animals , Biophysics , Humans , Immune System , Immunity, Innate , In Vitro Techniques , Lab-On-A-Chip Devices , Lymphocytes/immunology , Macrophages/immunology , Mice , Microfluidics , SARS-CoV-2 , Thymus Gland/immunology , Tissue Array Analysis
6.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1006333

ABSTRACT

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Subject(s)
COVID-19/virology , Influenza A virus/physiology , Lung/virology , Nasal Cavity/virology , SARS-CoV-2/physiology , Trachea/virology , Viral Tropism/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Dogs , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Nasal Cavity/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL